(b) Express f(x) = x as a half range sine series in 0 < x < 2.

Unit III

- 6. (a) Determine the stereographic projection of the following points on the sphere of radius 1 and centre (0, 0, 0):
 - (i) 1 + i
 - (ii) 1 i. $2\frac{1}{2}$
 - (b) Prove that an analytic function with constant modulus is constant. 2½
- 7. (a) For what values of z, the function $z = \sinh u \cos v + i \cosh u \sin v$ ceases to be analytic. $2\frac{1}{2}$
 - (b) Show that the function $u(x, y) = x^3 3xy^2$ is harmonic and find the corresponding analytic function. $2\frac{1}{2}$

No. of Printed Pages: 05 Roll No.

32505

B.A. & Hons. (Subsidiary) EXAMINATION, 2025

(Sixth Semester)

(Regular & Re-appear)

MATHEMATICS

BM-361

Real and Complex Analysis

Time: 3 Hours [Maximum Marks: 27

Before answering the question-paper, candidates must ensure that they have been supplied with correct and complete question-paper. No complaint, in this regard will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting *one* question from each Unit. Q. No. 1 is compulsory.

(Compulsory Question)

- 1. (a) If $u = x^2 x \sin y$ and $v = x^2y^2 + x + y$, then find $\frac{\partial(u, v)}{\partial(x, y)}$.
 - (b) Define Beta function.
 - (c) State Dirichlet's integral.
 - (d) Define conformal mapping.
 - (e) State Parseval's identity for Fourier series.

1

(f) Show that :
$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$
.

Unit I

- 2. (a) If $x = r \cos \theta$, $y = r \sin \theta$, show that : 2½ $\frac{\partial(x,y)}{\partial(r,\theta)} \cdot \frac{\partial(r,\theta)}{\partial(x,y)} = 1.$
 - (b) Express $\int_0^1 x^m (1-x^n)^p dx$ in terms of Beta function and hence evaluate:

$$\int_0^1 x^5 (1 - x^3)^3 dx. 2\frac{1}{2}$$

3. (a) Prove that $\Gamma(n)\Gamma(1-n) = \frac{\Pi}{\sin n\Pi}$, when

$$\int_0^\infty \frac{x^{n-1}}{1+x} dx = \frac{\Pi}{\sin n\Pi}.$$
 2½

(b) Evaluate the integral

$$\int_{0}^{1} \int_{0}^{x} \int_{0}^{1+x+y} f(x, y, z) dx dy dz \qquad \text{where}$$

$$f(x, y, z) = 1.$$
2½

Unit II

- 4. (a) Find the Fourier expansion of f(x) = x in $[-\pi, \pi]$.
 - (b) Obtain the Fourier series expansion of the function f in $(0, 2\pi)$ defined as:

$$f(x) = \begin{cases} x \text{ for } 0 < x < \pi \\ 0 \text{ for } \pi < x < 2\pi \end{cases}$$
 2½

5. (a) Find the Fourier series expansion of the function f with period 2π defined as:

$$f(x) = \begin{cases} -1 \text{ for } -\pi < x < 0 \\ 1 \text{ for } 0 \le x \le \pi \end{cases}$$
 2½

Unit IV

- 8. (a) Find the fixed points, normal form and nature of bilinear transformation $w = \frac{z}{z-2}.$ 2½
 - (b) Find the Mobius transformation which maps the points $z_1 = 2$, $z_2 = i$, $z_3 = -2$, into the points $w_1 = 1$, $w_2 = i$, $w_3 = -1$.
- 9. (a) Find the bilinear transformation which maps the points z = 0, -1, i onto $w = i, 0, \infty$, Also find the image of the unit circle |z| = 1.
 - (b) Show that the family of circles |w-1| = k is transformed into the family of lemniscate |z-1| |z+1| = k under the transformation $w = z^2$.

Unit IV

8. (a) Find the fixed points, normal form and nature of bilinear transformation

$$w = \frac{z}{z - 2}.$$
 2½

- (b) Find the Mobius transformation which maps the points $z_1 = 2$, $z_2 = i$, $z_3 = -2$, into the points $w_1 = 1$, $w_2 = i$, $w_3 = -1$.
- 9. (a) Find the bilinear transformation which maps the points z = 0, -1, i onto w = i, 0, ∞ , Also find the image of the unit circle |z| = 1.
 - (b) Show that the family of circles |w-1| = k is transformed into the family of lemniscate |z-1| |z+1| = k under the transformation $w = z^2$.

